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Large amplitude motion

Collective variables needed Microscopic approach needed

Results very sensitive to the number 
of nucleons

Z=91

Z=90

Z=89

N=136

 Charge distribution

226Th

K.H. Schmidt et al, Nucl. Phys. A665, 221 (2000)

The Fission processThe Fission process

N. Dubray et al, Phys.Rev. C 77, 014310 
(2008)
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Total Kinetic Energy drops suddenly       
              

F. Vives, et al., Nucl Phys. A662 (2000) 63 S. Pomme et al., Nucl. Phys A560 (1993) 689

 Intrinsic excitations during the fission process Intrinsic excitations during the fission process

* Experimental observables

N. Dubray et al., Phys. Rev. C 77 (2008) 014310

* Prompt neutrons emission

ν=
Edef

Ek+Bn

Eint is missing
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Generalization of the Generator Coordinate Method (GCM) to the intrinsic excitations

At each step of the collective motion the system is developed on a basis which 
includes the excited states:

 

THE SCHRODINGER COLLECTIVE INTRINSIC MODELTHE SCHRODINGER COLLECTIVE INTRINSIC MODEL

 microscopic

 (time dependent)

 quantum mechanical

 non adiabatic

Goal : Description of the fission

fi(q):  Unknown functions 

q: set of collective variables

N. Tajima et al, Nucl. Phys. A, 542, 355   /   H. Muther et al, Phys. Rev. C , 15, 1467

HFB minima HFB excited states

|Ψ ⟩=∫ dq f 0(q )|φ0(q )⟩+∑
i≠0

∫ dq f i(q )|φ i(q ) ⟩
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Introduction of the collective derivative operator :                      

which acts only on the wave functions f

The variational principle                               leads to the Hill Wheeler 
equation :

q
iP


 

0
ˆ

)(






 EH

qf i

∫ds e isP/ 2
[ H (q+s /2,q−s /2)−EN ( q+s/2,q−s/2 ) ]e isP/2 f (q )=0

f (q' )=e i  sP /2 f (q )Taylor expansion

• Non local integral equation

• Matricial equation

with                                                                 Hamiltonian (kernel) matrixH i,j(q,q' )=⟨φ i(q )|Ĥ|φ j(q' )⟩

)'()()',(, qqqqN jiji  Overlap (kernel) matrix

s=q−q'
q=(q+q') /2

Towards the Hill Wheeler equationTowards the Hill Wheeler equation

with
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The Hill Wheeler equationThe Hill Wheeler equation

The Hamiltonian and overlap kernels H(q), N(q) are expressed with the help of their 
moments and of the Symmetric Ordered Products of Operators

with such notation, the Hill Wheeler equation writes :

• H(q), N(q) hermitian

• Exact equation

• Matricial

• Odd and even moments included

A(n)
(q )=in ∫

−∞

+∞

ds sn A( q+s/2,q−s /2 ) [ A(n)
(q )P ]

[n ]
=

1

2n
∑
q

Cn
q Pn−q A(n)

( q̄ )Pq

(∑
n

1
n!

[H (n )
(q )P ]

[ n]

⏟
Ĥ ( q )

−E∑
n

1
n!

[N (n )
(q )P ]

[ n ]

⏟
N̂ (q )

) f (q )=0

in the present work
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Defining the normalized wave function g such as                                   the 
Schrödinger equation is derived from the Hill Wheeler equation :

where a truncation of the Hamiltonian and overlap kernels is performed up to the 
symmetric product of "order 2 "  

)()(ˆ)( 2/1 qfqNqg 

with 

[ Ĵ−1 /2
+ ( q̄ )

1

√N (0 )(q )
(H (0)

(q )+[ H(1 )
(q )P ]

(1 )
+

1
2

[ H (2)
( q )P ]

(2 )
)

1

√N (0 )( q)
Ĵ−1/2 ( q̄ )−E ]g ( q̄ )=0,

with the condition Ĵ−1/2
+

( q̄ ) Ĵ ( q̄ ) Ĵ−1/2 ( q̄ )=I

Ĵ ( q̄ )=I+
1

√N (0 )
( q̄ )

([N (1 )( q̄ )P ]
[1]

+
1
2

[N (2)( q̄ )P ]
[2]

) 1

√N (0)
( q̄ )

Reduction to a Schrödinger like equationReduction to a Schrödinger like equation
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   Determination of the excited HFB states
                     (in even-even nuclei)

   Determination of the excited HFB states
                     (in even-even nuclei)

)(qi

- Preserves the time reversal and axial symmetries

- 4, 6 … qp neglected, 

- Should have K=0 with K the projection of the angular momentum onto the 
symmetry axis ie Ki1=Ki2 

- No self-consistent  blocking: the average particle number of the
 excitation can differ from the mean value of the HFB ground state.

two kinds of excitations taken into account: pairing vibration type
                        and ph RPA type

K

J


with    a state and     its time reversed state1i 1i

 12 iiie 

|φ i(q )⟩=α i(ηi1
+
( q )η ī 2

+
(q )+ηi2

+
(q )η ī 1

+
(q )) |φ0(q )⟩

ZEi<10MeV
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Results on the overlap matrix in 236UResults on the overlap matrix in 236U

1) Diagonal terms

   

bqb 10020 

)'()()2/,2/(, qqsqsqN iiii 

:0i )'()( qq 

Dependence in deformation

Overlaps between HFB minima and different 2qp 
excitations  (labeled by KΠ(i)) at bq 60

:0i )'()( qq ii 

Diagonal overlaps not sensitive to excitations (except a few 
exceptions: level repulsions)
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2) Non diagonal terms of the overlap matrix )2/,2/( sqsqNij 

)2/,2/(,0 sqsqN i  )2/,2/(, sqsqN ji 

bq 30

Strong dependence of the overlap in deformation and in excitations.

bq 30

The moments derivatives can’t be neglected.

Formal calculation of                     at the 4th order in the 
development in moments

 Formalism key point:

Bernard et al, PRC 84, 044308 (2011)

Ĵ−1/2 (q̄)
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Ĵ−1/2
+

( q̄ ) Ĵ ( q̄ ) Ĵ−1/2( q̄ )≈I

Determination of Determination of Ĵ−1/2 ( q̄ )

 


 
4

0

)(
2/1 )()(ˆ

n

n
n PqjqJ

2/1
ˆ

J must be solution of   (*)

The solution of (*) is found by assuming: 

Ĵ−1/2=I−
1
2

[WP ]
(1)

−[ B P ]
(2 )

Set of non linear coupled equations

Then the solution is restricted to the second order: 

We set

   

   
2,0

1,0

)2(

)1(





pforN

pforN
p

p

W=F1 (N (0 ) , N (1 ) ,N (2 )) B=F2 (W , N (0 )' ,N (2 )' )

with
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The coupling between the 2qp excited surfaces are defined considering 
the non diagonal elements, written as:

Diagonal terms:

acts on )(qg

Collective Intrinsic Hamiltonian of the Schrödinger equationCollective Intrinsic Hamiltonian of the Schrödinger equation

Linear term in P

E-V

E
Properties of the Hamiltonian :

- Hermitian

- Time reversal invariant

- No dissipation; explicit treatment of the 
coupling between HFB g.s and 2qp excitations

(HCI
(q )−E)g (q )=0

H ij
CI

(q)=[(
1

2M (q)
)
ij

P]
(2)

+[T ij (q)P]
(1)

+V ij(q )

H ii
CI

(q)=[(
1

2M (q)
)
ii

P]
(2)

+V ii(q ),

P=i  ∂
∂ q
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Matricial case

Renormalization of the mass and the potential by the excitations

Diagonal terms write: H ii
CI ( q̄ )=[( 1

2M ( q̄ ))ii P]
(2)

+V ii( q̄ )

Diagonal terms of the Collective Intrinsic HamiltonianDiagonal terms of the Collective Intrinsic Hamiltonian

E-V

E

Scalar case
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Conclusion and outlooksConclusion and outlooks

)'(ˆ)( qHq ji 

Future  

Present 

Further future  

Derivation of a new formalism: the coupling between intrinsic 
excitations and collective modes is determined microscopically. The 
sole ingredient is the effective force.

-  Evaluation of                              . Reduction of the collective 
intrinsic Hamiltonian

- Calculations of the new inertia 
 (+ comparison with the usual adiabatic case)

- 1D calculation along a fission barrier.  
- Other applications of the SCIM: spectroscopy  (low lying 0+2 states, decay 

of superdeformed states)
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